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Theorem. The permanent of A is
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Proof. We sum ( , , , )Q x x xn1 2 f  over all pos-
sible x 1i != .
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As we can easily see only the term 
( )per A $ x x xn1 2g  is always contributing to 

this sum because x 1i
2 =  for , , ,i n1 2 f= . 

Terms of ( , , , )Q x x xn1 2 f  with factor xk miss-
ing in ( , , , )P x x xn1 2 f , are counted once t 
and once - t so the overall result is 0. There 
are 2n possible vectors xr with x 1i != , so 
we have proved:
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By symmetry we can symplify this result by 
fixing x 11 =
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It is easy to see that formula (4) is es-
sentially the same as Glynn’s. A preliminary 
form of formula (4) was first published in 
2006 as a sidenote in [7]. The formula fits 
in the series from Balasubramanian [1], 
Bax-Franklin [2] to Glynn [4] as described 
in the Wikipedia page ‘Computing the per-
manent’ [8]. s

er than Ryser’s, based on the finding of a 
certain coefficient of a certain term in a 
certain polynomial. K. Balasubramanian [1] 
uses Muir-algebra in his 1980-thesis. Bax 
and Franklin [2] use ‘finite differences’ to 
come to a formula. David Glynn [4] finds 
the formula [4, Theorem 2.1]:
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where the outer sum is over all 2n 1-  vec-
tors ( , , , ) { }1 1n

n
1 2 !f !d d d d= = .

An elementary approach
We define a vector ( , , ..., )x x x xn

T
1 2=r  and a 

vector yr with y Ax=r r. Let P be a multivari-
ate polynomial defined by
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All terms of P have degree n. Expanding 
this polynomial and summing the terms 
with x x xn1 2f  we get a well known result
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A theorem
First we define a polynomial Q of degree 
2n:

Permanent? Yes, permanents are a long time 
with us. And as the name suggests they will 
stay. In 1812 permanents were introduced 
independently by Binet and Cauchy writ-
ing about ‘certain functions permanente’. 
See Minc [5] for a complete history up to 
1978. Most people know the permanent 
from a conjecture (now theorem) of Van 
der Waerden (1926) about double stochas-
tic matrices, but permanents have a broad 
range of applications: counting problems 
in combinatorics, in graph theory the num-
ber of perfect matches can be calculated 
by means of the permanent of an incidence 
matrix, applications in statistics, even in 
chemistry and many many more. See [3, 5]. 

The permanent of an m n#  matrix A 
with m n#  is defined by
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where the summation extends over all 
one-to-one functions r from { , ..., }m1  to 
{ , ..., }n1 . In case A is a square matrix, we 
get the well-known formula for a perma-
nent, which is like the determinant but 
without the signs as the sum of all n! diag-
onal products.

A hard problem
Binet gave algorithms for ,m 2 3=  and 4. 
There are general algorithms by Binet / Minc 
and Ryser. See [3, 5]. For square matrices 
there are a few published algorithms oth-
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A formula for the permanent
In January 2003, Jaap Spies found a solution to ‘Problem 29’ of the old NAW Problem Sec-
tion. The solution was the permanent of a square matrix. Moments later, he discovered an 
algorithm for the calculation of the permanent with basic algebraic means.
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