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A formula for the permanent

In January 2003, Jaap Spies found a solution to ‘Problem 29’ of the old NAW Problem Sec-
tion. The solution was the permanent of a square matrix. Moments later, he discovered an
algorithm for the calculation of the permanent with basic algebraic means.

Permanent? Yes, permanents are a long time
with us. And as the name suggests they will
stay. In 1812 permanents were introduced
independently by Binet and Cauchy writ-
ing about ‘certain functions permanente’.
See Minc [5] for a complete history up to
1978. Most people know the permanent
from a conjecture (now theorem) of Van
der Waerden (1926) about double stochas-
tic matrices, but permanents have a broad
range of applications: counting problems
in combinatorics, in graph theory the num-
ber of perfect matches can be calculated
by means of the permanent of an incidence
matrix, applications in statistics, even in
chemistry and many many more. See [3,5].

The permanent of an m Xn matrix A
with m < n is defined by

per(4) =2 a172(1)22(2) ** Amz(m)s (1)
Ve

where the summation extends over all
one-to-one functions 7 from {1,..,m} to
{1,..,n}. In case A4 is a square matrix, we
get the well-known formula for a perma-
nent, which is like the determinant but
without the signs as the sum of all »! diag-
onal products.

A hard problem

Binet gave algorithms for m =2,3 and 4.
There are general algorithms by Binet/Minc
and Ryser. See [3,5]. For square matrices
there are a few published algorithms oth-
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An elementary approach

We define a vector Z = (z1,2y,...,z,) . and a
vector § with § = Az. Let P be a multivari-
ate polynomial defined by

Pzy,29,....7,) = Hyl H Z aT; (5)
=1 i=1j7=1

All terms of P have degree n. Expanding

this polynomial and summing the terms

with 2,25 ...z, we get a well known result
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Proof. We sum Q(z,2s, ...,
sible x; =+ 1.
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As we can easily see only the term
per(A4) - may---x, is always contributing to
this sum because z7 =1 for i=1,2,...,n
Terms of Q(zy,2y, ...,x,) with factor z;, miss-
ing in P(x,2,...,2,), are counted once ¢
and once —¢ so the overall result is 0. There
are 2" possible vectors & with ;=% 1, so
we have proved:

per(A) =2 Z Q(-Tl7'r27 .. '7xn) .
r;==%1

By symmetry we can symplify this result by
fixing z; = 1

per(4)=2"""L
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It is easy to see that formula (4) is es-
sentially the same as Glynn’s. A preliminary
form of formula (4) was first published in
2006 as a sidenote in [7]. The formula fits
in the series from Balasubramanian [1],
Bax-Franklin [2] to Glynn [4] as described
in the Wikipedia page ‘Computing the per
manent’ [8].
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