NAW Problem 29

Jaap Spies

January 2003

The Problem

Let n and h be natural numbers with n > 0 and A be a subset of $\{1, 2, ..., n+h\}$ with size n. Count the number of bijective maps $\pi: \{1, 2, ..., n\} \to A$ such that $k \le \pi(k) \le k+h$ for all $1 \le k \le n$.

Solution

Let $A = \{a_1, a_2, ..., a_n\}$ be a subset of $\{1, 2, 3, ..., n+h\}$, with $1 \le a_1 < a_2 < ... < a_n \le n+h$ and $(n > 0, h \ge 0)$. We are looking for permutations π of the elements of A with restrictions on permitted positions such that $k \le \pi(k) \le k+h$ for all $1 \le k \le n$. With this restrictions we can associate a (0,1)-matrix $B = [b_{ij}]$, where $b_{ij} = 1$, if and only if a_j is permitted in position i, meaning $0 \le a_j - i \le h$. We define S_B as the set of all permitted permutations, to be more precise

$$S_B = \{\pi | \prod_{i=1}^n b_{i\pi(i)} = 1\}$$

The number of elements of S_B can be calculated by

$$|S_B| = \sum_{\pi} \prod_{i=1}^{n} b_{i\pi(i)} = per(B)$$

where per(B) is the permanent of B.

Example

Let n = 4, h = 3 and $A = \{2, 3, 5, 6\}$. We can easily see that in this case we have

$$B = \left(\begin{array}{c} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

and per(B) = 5, so there are 5 permitted permutations. Being (2,3,5,6), (3,2,5,6), (2,3,6,5), (3,2,6,5) and (2,5,3,6).

Implementation

An implementation of the algorithm can be found on the website of the author: ${\rm http://www.jaapspies.nl/mathfiles/problem29.c}$

For a given n and h this program calculates for all possible subsets A the number of allowed bijective maps.

Literature

- [1] R.A Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [2] H. Minc, Permanents, Reading, MA: Addison-Wesley, 1978.