## Problem C NAW 5/21 nr. 1 maart 2020

Jaap Spies

April 2020

## The problem

Let  $n \ge 4$  be an integer and A be an abelian group of order  $2^n$ . Let  $\sigma$  be an automorphism of A such that the order of  $\sigma$  is a power of 2. Then the order of  $\sigma$  is at most  $2^{n-2}$ .

## Solution

Let p be prime We will use a well known result, Lemma: A cyclic group of order  $p^r$  has an automorfism group of order  $\phi(p^r) = p^r - p^{r-1} = p^{r-1}(p-1)$  where  $\phi$  is Euler's totient function.

Furthermore an abelian group of order n contains an element of order p if p is a prime dividing n.

A finite abelian group is a direct product of its Sylow subgroups. Here we only have p = 2, so we know that we can write A as a direct product of cyclic groups  $C_i$ :

 $A = C_1 \times C_2 \times \cdots \times C_k$  for some k, with invariants  $2^{e_i}$ ,  $e_1 = 1$  and  $\sum_i e_i = n$ . We arrange  $e_1 \leq e_2 \leq \cdots \leq e_k$  and let  $e_1 = \cdots = e_r = 1$  for some  $r \leq n$ .

We associate with each direct product a tuple of the exponents  $e_i$  of its invariants:  $(e_1, e_2, \dots, e_k)$  and we arrange the tuples for a fixed n from (1, n - 1) down to  $(1, 1, \dots, 1)$  in a partial ordered set. For a fixed n we call the collection of tuples  $T_n$ 

A representation of  $T_6$ :



For larger n the representations will be more complex!

Now for the most difficult case: r = n = 4 with tuple (1, 1, 1, 1). Show there is no automorphism  $\sigma$  of order  $2^3 = 8$ .

Let  $\{b_i\}$  be a basis of A. All  $b_i$  are of order 2. A permutation of the  $b_i$  corresponds to an automorphism of A. We will use some graph theory here. We only consider derangements, no  $b_i$  is taken to itself. The number of derangements is  $D_4 = per((J_4 - I_4))$ , the permanent of a square matrix with 0's on the diagonal and 1's elsewhere. This permanent can be calculated with the Formula of Spies if you like :-) (see [2]):  $D_4 = 9$ . More general you get (see [3])

$$D_n = \sum_{r=0}^{n-1} (-1)^r \binom{n}{r} (n-r)^r (n-r-1)^{n-r}$$

We have permutations  $P_i$  with  $1 \le i \le 9$ . As we can easily see all permutations/automorphisms are of order at most  $2^2 = 4$ . See for example the cycle  $b_1 \rightarrow b_2 \rightarrow b_3 \rightarrow b_4 \rightarrow b_1$  is of order 4. With permutation matrix:

$$P_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

For n = 5, n = 6 and n = 7 there are no cycles of length power of 2 other than of maximal order 4. If n = 8 we can make cycles of length at most  $2^3 = 8$ . If the order of automorphism  $\sigma$  is a power of 2, then the order is strictly less than  $2^{n-2} = 2^6$ .

This reasoning can be repeated for higher values of n.

To finish the case n = 4, we observe that tuple (1,3) leads with Lemma 1 to an order  $2^2 = 4$  of the automorphism group. With elementary counting the tuple (1,1,2) leads to order  $2 \cdot 2 = 4$  for our  $\sigma$ .

Under the assumption that the order of  $\sigma$  is  $2^u$  for some u we define functions  $O_n(t)$  on the tuples  $t \in T_n$  with value the maximum of  $2^u$  in the decomposition belonging to that tuple. We call an automorphism of A allowed if its order is a power of 2.

If k = 2 applying the Lemma for r = n - 1 and p = 2, we see that the order of Aut(A) is equal to  $2^{n-2}$ . We start with

$$O_n((1, n-1)) = 2^{n-2}$$

Descending the representation of  $T_n$  is "splitting" a  $C_i$  in "parts": Tuples  $t = (e_1, \dots, a, \dots, e_k)$  and  $s = (e_1, \dots, a_1, a_2, \dots, e_{k+1})$  with  $a_1 + a_2 = a$ . Special case  $t = (e_1, \dots, a)$  and  $s = (e_1, \dots, a_1, a_2)$ .

We distinguish two cases, first  $a_1 = a_2$ . Replacing  $C_i$  of order  $2^a$  by the direct product of two equal cyclic groups of order  $2^{a_1} = 2^{a_2}$  will have no influence on the number of allowed automorphisms. Second, if  $a_1 < a_2$  we see with the Lemma:  $2^{a-1} \ge 2^{a_1-1} \cdot 2^{a_2-1} = 2^{a-2}$ . In this case we conclude that the number of allowed automorfisms will never increase.

In any case we can verify that  $O_n(t) \ge O_n(s)$ . That completes the story. The order of  $\sigma$  is at most  $2^{n-2}$ .

## References

[1] Marshall Hall, Jr. The Theory of Groups, Macmillan, New York, 1959.

[2] https://nl.wikipedia.org/wiki/Permanent\_(wiskunde)#Formule\_van\_Spies

[3] Brualdi and Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991