Problem C NAW 5/8 nr. 4 december 2007

Jaap Spies

February 2008

The problem

Introduction

Let G be a finite group with n elements. Let c be the number of pairs $(g_1, g_2) \in G \times G$ such that $g_1g_2 = g_2g_1$. Show that either G is commutative or that $8c \leq 5n^2$. Show that if $8c = 5n^2$ then 8 divides n.

Solution

We need some elementary group theory and notation. Let Z(g) be the centralizer of $g \in G$ and K(g) the conjugacy class containing g. Z is the center of G.

We now have |G| = n, $c = \sum_{g \in G} |Z(g)|$ and

$$|K(g)| = [G : Z(g)] = \frac{|G|}{|Z(g)|} = \frac{n}{|Z(g)|}$$

We write the ratio

$$r = \frac{c}{n^2} = \frac{\sum_{g \in G} |Z(g)|}{n^2} =$$
$$= \frac{1}{n^2} \cdot \sum_{g \in G} \frac{n}{|K(g)|} =$$
$$= \frac{1}{n} \cdot \sum_{g \in G} \frac{1}{|K(g)|} = \frac{k}{n}$$

where k is the number of conjugacy classes.

We note that r = 1 if and only if G is commutative. So from now on let G be a non Abelian group.

We proof the following lemma:

The order of G/Z can not be a prime number.

Proof: As groups with order a prime are cyclic it is enough to proof that G/Z can not be cyclic. Suppose G/Z be cyclic generated by Zx. We get

$$G = Z \cup Zx \cup (Zx)^2 \cup (Zx)^3 \cup \dots = Z \cup Zx \cup Zx^2 \cup Zx^3 \cup \dots$$

and now arbitrary elements $g_1 = z_1 x^i$ and $g_2 = z_2 x^j$ clearly commute. This is a contradiction.

In order to maximise the number of conjugacy classes k we must maximise |Z| the number of conjugacy classes with only one element. From the lemma it follows that $|G/Z| \ge 4$ and so $|Z| \le \frac{1}{4}|G|$. The other conjugacy classes must have 2 or more elements. Hence

$$k \le \frac{1}{4}|G| + \frac{1}{2} \cdot \frac{3}{4}|G| = \frac{5}{8}n$$

so that

$$r \leq \frac{5}{8}$$

and therefor

$$8c \le 5n^2$$

If $r = \frac{5}{8}$ and hence $k = \frac{5}{8}n$ it is trivial that 8 is a divisor of n.