Problem C NAW 5/6 nr. 4 December 2005

Jaap Spies

January 2006

The problem

Introduction

For a finite affine geometry there are a finite number of points and the axioms are as follows:

- 1. Given two distict points, there is exactly one line that includes both points.
- 2. The parallel postulate: Given a line L and a point P not on L, there exists exactly one line through P that is parallel to L.
- 3. There exists a set of four points, no three collinear.

We denote the set of points by \mathbf{P} , and the set of lines by \mathbf{L} . We define an automorphisme or collineation σ the usual way (a collineation keeps collinearity). Prove that there exist a point $P \in \mathbf{P}$ with $\sigma(P) = P$ or a line $L \in \mathbf{L}$ with $\sigma(L) = L$ or $\sigma(L) \cap L = \emptyset$.

Solution

Let π be a finite affine plane of order n. π can be canonically embedded in a projective plane $\bar{\pi}$ of order n by adding a line L_{∞} and a point on every line L of π : $L \wedge L_{\infty}$, where parallel lines L and L' share the same point on L_{∞} . $\bar{\pi}$ has $n^2 + n + 1$ points P_i and an equal number of lines L_i . Let $N = n^2 + n + 1$. We define an incidence matrix $A = (a_{ij})$ of order N:

$$a_{ij} = 1$$
 if $P_i \in L_j$ and $a_{ij} = 0$ if $P_i \notin L_j$

We see that

$$AA^T = A^T A = nI + J \tag{1}$$

with J a matrix with every entry 1.

A collineation σ of π can be extended to a collineation of $\overline{\pi}$, also indicated by σ . σ acts on the points P_i as a permutation P and as a permutation Q on the lines L_i . We write P and Q as (0, 1)-matrices of order N with entries:

$$p_{ij} = 1 \quad \text{if} \quad \sigma(P_i) = P_j$$
$$q_{ij} = 1 \quad \text{if} \quad \sigma(L_i) = L_j$$

and $p_{ij} = 0$, $q_{ij} = 0$ otherwise.

We now have

$$AQ = PA$$

and according to (1) we have

$$(det(A))^{2} = det(nI + J) = (n+1)^{2}n^{N-1} > 0$$

 So

$$Q = A^{-1}PA$$

P and Q are similar as matrices, but also as permutations. Especially P and Q have the same number of cycles of length one, also called fixed "points". $\sigma(L_{\infty}) = L_{\infty}$, so there must be at least one fixed point. If there are no fixed points on L_{∞} there is a affine point P with $\sigma(P) = P$. If there is a fixed point on L_{∞} , say $L \wedge L_{\infty}$, then $\sigma(L) \parallel L$, meaning $\sigma(L) = L$ or $\sigma(L) \cap L = \emptyset$.