Problem B NAW 5/5 nr. 3 oct 2005

Jaap Spies

October 2005

The problem

Introduction.

1. Let G be a group and suppose that the maps $f, g: G \to G$ with $f(x) = x^3$ and $g(x) = x^5$ are both homomorphisms. Show that G is Abelian.

2. In the previous excercise, by which pairs (m, n) can (3, 5) be replaced if we still want to be able to prove that G is Abelian.

Solution.

Part 1

Let $(ab)^5 = a^5b^5$ for all $a, b \in G$, then we easily see that $(ba)^4 = a^4b^4$. Now $(ab)^3 = a^3b^3$ for all $a, b \in G$ and hence $(ba)^2 = a^2b^2$. So $(a^2b^2)^2 = a^4b^4$ and $b^2a^2 = a^2b^2$. Hence in G squares commute.

Now $a^4b^4 = b^4a^4 = (ba)^4$ and so $b^3a^3 = (ab)^3 = a^3b^3$ and hence in G cubes commute. In the solution of Opgave 2003-4B from the UWC it is proved that in this case G is Abelian.

Part 2

We define $f_n(x) = x^n$ for $x \in G$. f_m and f_n are homomorphisms. The case m = 2 ($m \le n$) is trivial because from $(ab)^2 = a^2b^2$ follows immediately ba = ab, etcetera.

From $(ab)^m = a^m b^m$ and $(ab)^n = a^n b^n$ (m < n) follows $(ba)^{m-1} = a^{m-1} b^{m-1}$ and $(ba)^{n-1} = a^{n-1} b^{n-1}$.

If k(m-1) = n-1 and m-1 = n-m we get $(a^{m-1}b^{m-1})^k = a^{n-1}b^{n-1}$. So n = 2m-1 and k = 2 and we may conclude that the (m-1)-th powers commute.

???

See also

Vlastimil Dlab, A note on powers of a group, Acta Sci. Math. (Szeged) 25, 1964, pp. 177-178.