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The problem

Introduction

We call a triangle integral if the sides of the triangle are integral. Consider the
integral triangles with rational circumradius.

1. Prove that for any positive integral p there are only a finitely many inte-
grals g such that there exists an integral triangle with circumradius equal

to Z.
q

2. Prove that for any positive integral ¢ there exist infinitely many integral
triangles with circumradius equal to 3; for an integral p with ged(p, ¢) = 1.

Solution

Let triangle ABC have integral sides a, b and ¢ with area A and circumradius
R. There exists a relation between this quantities given by Heron’s formulae

(4A? =(a+b+c)a+b—c)la—b+c)(—a+b+c) (1)
and
abc . abc
A= iR or equivalently R= A (2)

So there is an one-to-one relation between the set of all integral triangles with
rational /integral area and the set of all integral triangles with rational circum-
radius. The set of all integral triangles with integral area is well studied as the
Heronian triangles.

Part 1

The sides being integral implies the existance of a minimal circumradius R, -
For a given p there exist only finitely many ¢ with % > Rpyin. So there are only
finitely many g with R = % the circumradius of an integral triangle.



Part 2

The case ¢ = 1 is trivial, as it is a well known fact that there are infinitely many
numbers p where p is the hypothenuse of a Pythagorean triangle. Scaling by
two gives an integral triangle with circumradius R = p.

For the case ¢ > 1 we use a parametric representation of the Heronian triangles
as found in [1]

a = n(m?+k?) (3)
b = m(n®+k?) (4)
c = (m+n)(mn—£k? (5)
A = Ekmn(m+n)(mn — k%) (6)

For any integers m, n and k with mn > k2 > %, ged(m,n,k) = 1 and

m > n > 1 we have one member of each simularity class of the Heronian

triangles.

Using this and (2) we get

(m? + k?)(n? + k?)
ik (7)

In our case we do not need the restriction to unique reduced Heronian triangles.
For the problem at hand we only need the triangle inequalities a+b > ¢, a+c > b
and b+ ¢ > a, together with mn — k? > 0. As we can easily see this can be
realised by m >k, n >k and k > 1.

Let k = g and p = w. All we have to prove is the existance of
infinitely many (m,n) such that 4 is a divisor of (m? + ¢?)(n?+ ¢?). If ¢ is even
than choose n > ¢ with ged(n,q) = 2 so 4](n? + ¢?), let m > ¢ be a positive
integer with ged(m,q) = 1. If ¢ is not even choose n > ¢ and m > ¢ both not

even with ged(n, q) = ged(m, q) = 1, so 2|(n? 4+ ¢*) and 2|(m? + ¢?).

The sums m? + ¢? and n? + ¢% or (%) + (£)? are so called primitive sums of

two squares, defined by 22 + y? with ged(z,y) = 1. For a prime divisor of such
a primitive sum z? + y2 it is not possible to be a divisor of y. In all cases we

easily verify that we have a Heronian triangle with circumradius R = § with

R =

ged(p, ¢) = 1, so we have infinitely many of them.
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