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Abstract

We give results related to problem 29 of the NAW. There are connec-
tions to Mathematical Recreation and Graph Theory.

The Problem

Introduction.

The Dancing School Poblem:
Imagine a group of n (n > 0) girls ranging in integer length from m to m+n−1
cm and a corresponding group of n + h boys (h ≥ 0) with length ranging from
m to m+n+h− 1 cm. Clearly m is the minimal length of both boys and girls.
The location is a dancing school. The teacher selects a group of n out of n + h
boys. A girl of length l can now choose a dancing partner out of this group of
n boys, someone either of her own length or taller up to a maximum of l + h.
How many ’matchings’ are possible?
The proof of the equivalence of Problem 29 and the Dancing School Problem is
left as an excercice.

A Solution

Let’s return to the original problem of Lute Kamstra. Let n > 0 and h ≥ 0 and
let A = {a1, a2, ..., an} be a subset of {1, 2, 3, ..., n + h}, with 1 ≤ a1 < a2 <
... < an ≤ n + h. We are looking for permutations π of the elements of A with
restrictions on permitted positions such that k ≤ π(k) ≤ k + h for all k. With
this restrictions we can associate a (0,1)-matrix B = [bij ], where bij = 1, if and
only if aj is permitted in position i, meaning i ≤ aj ≤ i + h.
We define SB as the set of all permitted permutations, to be more precise

SB = {π|
n∏

i=1

biπ(i) = 1} (1)

The number of elements of SB can be calculated by

|SB | =
∑

π

n∏
i=1

biπ(i) = per(B) (2)

where per(B) is the permanent of B.
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For example, let n = 4, h = 3 and A = {2, 3, 5, 6}. We can easily see that in
this case we have

B =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1


and per(B) = 5, so there are 5 permitted permutations.
Case closed? We know that in general calculating a permanent is a hard problem
with algebraic complexity of order n22n. In some special cases there are more
efficient algorithms.

Some Questions and Answers

Bipartite Graphs

Matrix B can be interpreted as an incidence matrix of a bipartite graph G with
vertices in X = {1, 2, ..., n} and Y = A = {a1, a2, ..., an}. An edge of G is a
pair (i, aj) with bij = 1. The edges of the example can be described as E =
{(1, 2), (1, 3), (2, 2), (2, 3), (2, 5), (3, 3), (3, 5), (3, 6), (4, 5), (4, 6)}. A matching in
G is a set of disjoint edges. A perfect matching is a matching containing n
edges.
The number of perfect matchings is per(B). Is it possible to calculate the
number of perfect matchings with graph theory?

Rook Theory

This is a more algebraic approach of accounting for |SB |. We interpret the
matrix B as an n × n chess board. On squares with bij = 1 we may place a
rook. Let rk(B) be the number of ways we can place k non-attacking rooks on
the board (that is, choosing k squares in B no two are on the same line). This
corresponds to a bipartite graph G, thus rk(B) is the number of matchings with
k edges.
The rook polynomial r(B, x) is defined as

r(B, x) =
n∑

k=0

rk(B)xk

So the number of perfect matchings is rn(B) = per(B).
Is there a simple way to calculate r(B, x) from B? We don’t think so, see also
the next section.

Configuration Matrix

Let m =
(
n+h

n

)
=

(
n+h

h

)
be the number of different subsets Xi of the set X =

{1, 2, ..., n + h}. We define a (0,1) configuration matrix C = [cij ] with i =
1, ...,m, j = 1, ..., n + h and cij = 1 if and only if xj ∈ Xi.
The set A in the previous subsection is characterized by the row (0 1 1 0 1 1 0).
Is it possible to find a matrix B directly from a row of C?
Let Ak, k = 1, 2, ...,m be a possible subset of X. In the row [ckj ] let h be
the number of entries with ckj = 0, n the number of entries with ckj = 1 and
Ak = {j|ckj = 1} = {a1, a2, ..., an}
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We define matrix Bk = [bij ] of order n with bij = 1 if and only if 0 ≤ aj − i ≤ h.
So the answer of Problem 29 for Ak is per(Bk) for k = 1, 2, ...,m.

Related Poblems

Dancing School and Rooks

What if the girls take over power and put aside the teacher and they choose
directly out of the set of n + h boys (accepting the length restrictions)?
Clearly we can once again associate a bipartite graph G to this problem. The
n-set X of girls and the (n + h)-set Y of boys provide the vertices. If a girl a
can choose a boy b of appropriat length we have an edge {a, b} of G.
The adjacency matrix A has a special form

A =
(

O B
BT O

)
Here B is a (0,1)-matrix of size n by n+h which specifies the adjacencies of the
vertices of X and the vertices of Y . We have bij = 1 if and only if i ≤ j ≤ i+h.
A matching M with cardinality n corresponds in the matrix B to a set of n 1’s
with no two of the 1’s on the same line. The total number of matchings with
|M | = n is per(B).
It is clear that our problem can be translated into a Rooks Problem:
Find the number of all possible non-attacking placings of n rooks on a n×(n+h)-
chessboard, while placing a rook on the i-th row and the j-th column is restricted
by the condition i ≤ j ≤ i + h.

Solutions?

Configuration Matrix

We tried to find a recursion from the configuration matrix of the previous sec-
tion, the so called direct attack. We define the total number of matchings to be
f(n, h). We can rearrange the rows of C such that all rows with ci,n+h = 1 are
placed together. In this case we have π(n) = n+h, so the corresponding number
of matchings is f(n − 1, h). In all other rows we have ci,n+h = 0, counting for
f(n, h − 1) matchings, but unfortunately also an extra amount where h comes
in! So we can write

f(n, h) = f(n− 1, h) + f(n, h− 1) + x(n, h)

So far we are not very succesfull in finding expressions for x(n, h).
In terms of the previous section we may also state

f(n, h) =
m∑

k=1

per(Bk)

We think this will not lead to any but trivial solutions, because the calculation
of the permanent is a #P-complete problem. The most effective algorithm in
general is Ryser’s (see later) which is of order of complexity O(n22n).
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Rooks Polynomials

In theory it is possible to calculate the rook polynomial of arbitrary chessboards
with the so called expansion theorem. Given a chessboard B, let rk(B) the
number of of ways to put k non-attacking rooks on the board, and let

r(B, x) =
n∑

k=0

rk(B)xk

be the rook polynomial of board B and (r0(B), r1(B), ..., rn(B)) the rook vector
of B.
We mark a square on board B as special and denote Bs as the chessboard
obtainted from B by deleting the corresponding row and column. Bd is the
board obtained from B by deleting the special square. The ways of placing k
non-attacking rooks can now be divided in two cases, those that have the rook
in the special square and those that have not. In the fist case we have rk−1(Bs)
possibilities and in the second rk(Bd). So we have the relation

rk(B) = rk−1(Bs) + rk(Bd)

This corresponds to

r(B, x) = x r(Bs, x) + r(Bd, x)

This is the so called expansion formula.
Now we can find the rook polynomial of arbitrary boards by applying repeatedly
the expansion formula. We think this is only feasible for small sizes, but maybe
there are some hidden recursions.

The Permanent to the Rescue

As stated before we do have a solution to our problem: per(B)! B has a clear
form compared to the previous section. So maybe there are solutions lying
around.
There is one in Ryser’s Algorithm: Let’s try to translate Theorem 7.1.1. of [1]
to our situation. Let B = [bij ] the n× (n + h) (0,1)-matrix with bij = 1 if and
only if i ≤ j ≤ i + h. Let r be a number with h ≤ r ≤ n + h − 1 and Br an
n× (n + h− r) sub-matrix of B. We define

∏
(Br) to be the product of the row

sums of Br and
∑∏

(Br) the sum of all
∏

(Br) taken over all choices of Br. So

per(B) =
n−1∑
k=0

(−1)k

(
h + k

k

) ∑ ∏
(Bh+k) (3)

This is a solution, be it not very effective! But maybe we can do better in some
cases.

The complements of ...

Intermezzo: Let A a (0,1)-matrix with m rows and n columns (m ≤ n). α is
a k-subset of the m-set {1, 2, ...,m} and β a k-subset of {1, 2, ..., n}. A[α, β] is
the k × k submatrix of A determined by rows i with i ∈ α and columns j with
j ∈ β.

4



The permanent per(A[α, β]) is called a permanental k-minor of A. We define
the sum over all possible α an β

pk(A) =
∑

β

∑
α

per(A[α, β])

We define p0(A) = 1 and note that pm(A) = per(A). pk(A) counts for the
number of k 1’s with no two of the 1’s on the same line, so pk(A) = rk(A) of
the rook vector of A.
According to theorem 7.2.1 of [1] we can evaluate the permanent of a (0,1)-
matrix in terms of the permanental minors of the complementary matrix Jm,n−
A, where Jm,n is the m by n matrix with all entries 1.
Translated to our matrix B of this section we get

per(B) =
n∑

k=0

(−1)kpk(Jn,n+h −B)
(n + h− k)!

h!
(4)

This is in particular interesting for h ≥ n − 2, in this case we can easily see
that pk(Jn,n+h − A) is independent of h, meaning that per(B) = f(n, h) is
polynomial in h. For example we have:
f(3, h) = h3 + 3h (h ≥ 1),
f(4, h) = h4 − 2h3 + 9h2 − 8h + 6 (h ≥ 2),
f(5, h) = h5 − 5h4 + 25h3 − 55h2 + 80h− 46 (h ≥ 3),
f(6, h) = h6 − 9h5 + 60h4 − 225h3 + 555h2 − 774h + 484 (h ≥ 4),
f(7, h) = h7− 14h6 +126h5− 700h4 +2625h3− 6342h2 +9072h− 5840 (h ≥ 5),
We have polynomials up to f(9, h).

The Free Dancing School

What if the girls choose directly out of the set of n + h boys and don’t accept
the length restrictions? They may choose a boy of their own length or taller.
Here again B is a (0,1)-matrix of size n by n + h which specifies the possible
dancing pairs. We now have bij = 1 if and only if i ≤ j ≤ n + h. The number
of matchings with cardinality n is per(B).
Let b1, b2, ..., bm be integers with 0 ≤ b1 ≤ b2 ≤ ... ≤ bm. The m by bm (0,1)-
matrix A = [aij ] defined by aij = 1 if and only if 1 ≤ j ≤ bi, (i = 1, 2, ...,m)
is called a Ferrers matrix, denoted by F (b1, b2, ..., bm). According to [1] we can
calculate the permanent with

per(F (b1, b2, ..., bm)) =
m∏

i=1

(bi − i + 1) (5)

We can associate B with a Ferrers matrix F (b1, b2, ..., bn) with bi = h + i. So

per(B) =
n∏

i=1

(h + i− i + 1) = (h + 1)n (6)

A result we could also have found by direct counting, but we couldn’t resist
mentioning Ferrers matrices!
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