Opgave B NAW 5/5 nr. 1 maart 2004

Jaap Spies

March 2004

The problem

Introduction

Consider the first digit in the decimal expansion of 2^n for $n \ge 0$: 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, \cdots . Does the digit 7 appear in this sequence? Which digit appears more often, 7 or 8? How many times more often?

Solution

The first question is easily solved affirmative: $2^{46} = 70368744177664$. The sequence is well known from Sloane's On-Line Encyclopedia of Integer Sequences as A008952. See [1].

We use the formula

$$a(n) = \lfloor 2^n / 10^{\lfloor n \cdot \frac{\ln 2}{\ln 10} \rfloor} \rfloor$$

in a Maple Program [2] to calculate the frequency of digit d in all a(k) with $k \leq n.$

```
> A:=proc(n,d) local i,k,s;
   s:=0;
   for k from 0 to n do
    i:=floor(2<sup>k</sup> / 10<sup>floor(k*ln(2)/ln(10)));</sup>
    if i=d then s:=s+1 fi;
   od;
   RETURN(s);
  end;
> seq(A(500,i),i=1..9);
   151, 88, 63, 49, 39, 34, 28, 26, 23
```

Frequency	count	f(d)	for	leading	digit	d	of 2^n .
rioquonoy	oounu	1 1 00 1	101	rouunis	angio	w	01 4 .

- •	,		-						
$\leq n$	d 1	2	3	4	5	6	7	8	9
85	26	16	10	9	7	5	4	5	4
86	26	16	10	9	7	5	5	5	4
100	31	17	13	10	7	7	6	5	5
200	61	36	24	20	16	13	11	11	9
1000	302	176	125	97	79	69	56	52	45
2000	603	354	248	194	160	134	114	105	89
3000	904	529	374	291	238	201	173	155	136
4000	1205	705	499	388	317	269	230	207	181
5000	1506	882	623	485	397	335	288	259	226
6000	1807	1058	748	582	476	401	347	309	273
7000	2108	1233	874	679	554	468	406	359	320
8000	2409	1409	999	776	633	537	462	412	364
9000	2710	1587	1122	873	714	602	520	463	410
10000	3011	1761	1249	970	791	670	579	512	458
Donford's law	. 2010	1761	1940	060	701	660	570	511	157

Benford's law : 3010 1761 1249 969 791 669 579 511 457 The second question can be answered by: 'the winner is 7'! From n > 209or some more, the frequency of the digit 7 is greater than that of 8. We can generalize: for n large enough the frequencies are a decreasing sequence, meaning for digits d_1 and d_2 : $d_1 < d_2$ implies $f(d_1) > f(d_2)$. We can think of a reason: multiplication of 2^n with leading digit 1 with $2^{10} = 1024$, gives more often the same leading digit, compared with the larger leading digits 2, $3, \dots, 9$, and so on.

But Benford's law comes to the rescue (see [3]), our sequence is a well known example:

Prob(first significant digit =
$$d$$
) = $log_{10}(1 + \frac{1}{d})$, for $d = 1, 2, ..., 9$

The similarity of the last two lines in the table above is striking! The last question is the most difficult to answer. Our best guess for large n is according to Benford's law:

$$\frac{f(7)}{f(8)}$$
 tends to $\frac{\log_{10}(1+1/7)}{\log_{10}(1+1/8)} = 1.133706496$

References

[1] http://www.research.att.com/~njas/sequences/

[2] http://www.maplesoft.com/

[3] Hill, T.P., The Significant-Digit Phenomenon, Amer. Math. Monthly 102, 322-327, 1995