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Problemenrubriek Permanent solutions of Problem 29

Dancing School problems
The Dancing School Problems originated from Problem 29 of the
March 2002 issue of the Nieuw Archief voor Wiskunde. The author
of this problem, Lute Kamstra, found his inspiration in juggling. A
flawed solution was published and after that the problem was decla-
red open again. The present author, challenged by the editor, found
a solution in January 2003. At the time, the Problem Section of the
NAW was merged into the UWC, and there were still a few solutions
to problems left unpublished, such as this solution. The methods
used to solve this problem are connected to Graph Theory.

The following Dancing School Problem is equivalent to Problem
29: Imagine a group of n (n > 0) girls ranging in integer length
from m to m + n− 1 cm and a corresponding group of n + h boys
(h ≥ 0) with length ranging from m to m + n + h− 1 cm. Clearly,
m is the minimal length of both boys and girls.

The location is a dancing school. The teacher selects a group of
n out of n + h boys. A girl of length l can now choose a dancing
partner out of this group of n boys, someone either of her own
length or taller up to a maximum of l + h. How many ’matchings’
are possible?

A Solution
Let us return to the original problem of Lute Kamstra. Let n > 0
and h ≥ 0 be given and let A = {a1 , a2 , . . . , an} be a subset
of {1, 2, . . . , n + h}, where we assume that ai < a j whenever
i < j. The problem asks us to count the number of bijections
π : {1, 2 . . . , n} → A that satisfy k ≤ π(k) ≤ k + h for all k.
We can code the restrictions in an n by n (0, 1)-matrix B = [bi j]
by setting bi j = 1 if and only if i ≤ a j ≤ i + h. The set of SB of
permitted bijections can then be characterized as follows:

SB = {π |
n

∏
i=1

bi π(i) = 1}.

The number of elements of SB is given by the following formula

|SB| = ∑
π

n

∏
i=1

bi π(i) ,

the latter expression is the permanent of the matrix B, which we
denote Per (B).

The matrix B can be interpreted as an incidence matrix of a
bipartite graph G with vertices in X = {1, 2, ..., n} and Y = A =
{a1 , a2 , ..., an}. An edge of G is a pair (i, a j) with bi j = 1.

The Permanent of a Matrix
In 1812 permanents were introduced independently by Binet
and Cauchy. They are defined as follows.
Let A = (ai j) be an m× n matrix over any commutative ring,
m ≤ n. The permanent of A is given by

Per (A) = ∑
π

a1π(1)a2π(2) · · · amπ(m) (1)

where the summation extends over all one-to-one functions
π from {1, ..., m} to {1, ..., n}.
The product a1π(1)a2π(2) · · · amπ(m) is called a diagonal pro-
duct. So the permanent of an m × n matrix A is the sum of
all the diagonal products of A.
Binet gave algorithms for m = 2, 3 and 4. There are general
algorithms by Binet/Minc and Ryser. See [3] and [4]. For an
implementation of Ryser’s algorithm in SAGE (Software for
Algebra and Geometry Experimentation) see [8]. As far as we
know SAGE [5] is the only Computer Algebra System (CAS)
with a permanent function for rectangular matrices.

The Permanent of a Matrix of order n
The permanent of a square matrix A of order n is defined as
Per (A) = ∑π a1π(1)a2π(2) ...anπ(n) where we sum over all n!
possible permutations π of 1, 2, . . . , n.
What is this rather strange cousin of the determinant? Let us
try to make this permanent more visible. We define a vector
x̄ = (x1 , x2 , . . . , xn)T and a vector ȳ = (y1 , y2 , . . . , yn)T with
ȳ = Ax̄. We define a multivariate polynomial

P(x1 , x2 , . . . , xn) =
n

∏
i=1

yi = (a11x1 + · · · + a1nxn)·

(a21x1 + · · · + a2nxn) · · · (an1x1 + · · · + annxn)

Expanding this polynomial and summing the terms with
x1x2 · · · xn, we get

∑
π

a1π(1)xπ(1) · a2π(2)xπ(2) · · · anπ(n)xπ(n)

=
(

∑
π

a1π(1)a2π(2) · · · anπ(n)

)
· x1x2 · · · xn

So Per (A) is the coefficient of the term with x1x2 · · · xn.
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How can we compute a permanent efficiently?
We know now where to find the permanent, but how can we
compute it? There is the famous Ryser’s Algoritm (see [3], p.
199-200). Here we give an alternative.
We define Q(x̄) = (∏n

i=1 xi) · P(x1 , x2 , . . . , xn), and sum Q(x̄)
over all possible x̄ with xi = ±1, for i=1, 2, . . ., n.
As we can easily see only the term Per (A) · x1x2 ...xn of
P(x1 , x2 , ..., xn) always contributes to this sum (x2

i = 1 for
i = 1, 2, ..., n). A term t of Q(x̄) with factor xk missing in
P(x1 , ..., xn) is counted once as t and once as −t, so the over-
all result is 0. There are 2n possible vectors x̄ with xi = ±1
for all i, so we have proved that the permanent of A is

Per (A) = 2−n · ∑
xi=±1

Q(x̄).

A matching in G is a set of disjoint edges. A perfect matching is a
matching containing n edges. The number of perfect matchings is
Per (B). See [3] p. 44.

Rook Theory
There is a more algebraic approach to the computation of |SB|. We
interpret the matrix B as an n × n chess board. On squares with
bi j = 1 we may place a rook. Let rk(B) be the number of ways
we can place k non-attacking rooks on the board (that is, choose
k squares on B of which no two are on the same line). This again
corresponds to a bipartite graph G, hence rk(B) is the number of
matchings with k edges.

The rook polynomial r(B, x) is defined as r(B, x) = ∑n
k=0 rk(B)xk

and (r0(B), r1(B), . . . , rn(B)) is called the rook vector of B. The
number of perfect matchings is rn(B) = Per (B).

In theory it is possible to determine the rook polynomial of
arbitrary chessboards using the so-called expansion theorem. We
mark a square on board B as special and let Bs denote the chess-
board obtained from B by deleting the corresponding row and
column. Bd is the board obtained from B by deleting the special
square, meaning that we change the 1 into a 0. The ways of pla-
cing k non-attacking rooks can now be divided in two cases, tho-
se that have the rook in the special square and those that do not.
In the first case we have rk−1(Bs) possibilities and in the second
rk(Bd). We consequently do have the relation rk(B) = rk−1(Bs) +
rk(Bd). This corresponds to r(B, x) = x r(Bs , x) + r(Bd , x). We can
now find the rook polynomial of arbitrary boards by repeatedly
applying the expansion formula.

All Solutions

Let m = (n+h
n ) = (n+h

h ) be the number of different subsets Xi of
order n of the set X = {1, 2, ..., n + h}. We define a so called (0,1)
configuration matrix C = [ci j] with i = 1, ..., m, j = 1, ..., n + h
and ci j = 1 if and only if x j ∈ Xi.

Let Ak, k = 1, 2, ..., m be a possible subset of X. In the row
[ck j] let h be the number of entries with ck j = 0, n the number of
entries with ck j = 1 and Ak = { j|ck j = 1} = {ak,1 , ak,2 , ..., ak,n}
We define the matrix Bk = [bi j] of order n with bi j = 1 if and only
if i ≤ ak, j ≤ i + h. In terms of these notions the answer of Problem
29 for Ak is Per (Bk) for k = 1, 2, ..., m.

In [6] a C-program can be found which for given n and h cal-

culates the answers for all possible subsets Ak.

Related Problems
What if the girls assume power, depose the teacher and choose
directly out of the set of n + h boys (still observing the length res-
trictions)? Formulated in the spirit of Problem 29: we can simply
count the injective maps π : {1, 2 . . . , n} → {1, 2 . . . , n + h} sub-
ject to the original restrictions: k ≤ π(k) ≤ k + h for all k.

Clearly we can once again associate a bipartite graph G to this
problem. The n-set X of girls and the (n + h)-set Y of boys provide
the vertices. If a girl x can choose a boy y of appropriate length we
have an edge {x, y} of G.

The adjacency matrix A has the special form

A =
(

0 B
BT 0

)
.

The matrix B that codes the restrictions now is an n by n + h
matrix of zeros and ones, defined by bi j = 1 if and only if
i ≤ j ≤ i + h.

In the matrix B a matching M with cardinality n corresponds
to a set of n 1’s with no two of the 1’s on the same row. The total
number of matchings with |M| = n is Per (B).

It is clear that this problem can be translated into a Rook Pro-
blem: find the number of all possible non-attacking placings of n
rooks on an n× (n + h)-chessboard, when placing a rook on the i-
th row and the j-th column is subject to the condition i ≤ j ≤ i + h.

As stated above we already have a solution to this problem:
Per (B). However, the special form of the matrix B may allow for
a more explicit formula. There is one in Ryser’s Algorithm: We
translate Theorem 7.1.1 of [3] to our situation.

Let B = [bi j] the n × (n + h) (0,1)-matrix with bi j = 1 if and
only if i ≤ j ≤ i + h. For any submatrix C of B we let ∏(C) denote
the product of its row sums and for a number r with h ≤ r ≤
n + h − 1 the expression ∑ ∏(Br) denote the sum of all ∏(Br),
where Br runs over all n× (n + h− r)-submatrices of B. Then

Per (B) =
n−1

∑
k=0

(−1)k
(

h + k
k

)
∑ ∏(Bh+k).

Some Concrete Results
Let A be a (0,1)-matrix with m rows and n columns (m ≤ n), let
α be a k-subset of the m-set {1, 2, ..., m} and let β be a k-subset
of {1, 2, ..., n}. A[α, β] is the k × k submatrix of A determined by
rows i with i ∈ α and columns j with j ∈ β.

The permanent Per (A[α, β]) is called a permanental k-minor of
A. We define the sum over all possible α an β

pk(A) = ∑
β

∑
α

Per (A[α, β]).

We define p0(A) = 1 and note that pm(A) = Per (A). The number
pk(A) counts the number of sets of k ones in the matrix A with
no two ones in the same row, so

(
p1(A), . . . , pm(A)

)
is the rook

vector of A. According to Theorem 7.2.1 of [3] we can evaluate the
permanent of a (0,1)-matrix in terms of the permanental minors
of the complementary matrix Jm,n − A, where Jm,n is the m by n
matrix with all entries 1.

Translated to our matrix B of the previous section, we get

Per (B) =
n

∑
k=0

(−1)k pk(Jn,n+h − B)
(n + h − k)!

h!
.
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The Van der Waerden Conjecture: a story told by J.H. van Lint
Few mathematicians have ever heard of permanents and if so,
it is the Permanent Theorem, better known as the Van der Waer-
den conjecture. Cited from [1]: "Van Lint, a well-known Dutch
mathematician, wrote (see [2]) about the previous history of the
Van der Waerden conjecture:

‘Much of the work on permanents is in some way connected
to this conjecture and about 75% of the work on permanents is
less than 20 years old! ... In 1926 B.L. van der Waerden proposed
as a problem (!) to determine the minimal permanent among all
doubly stochastic matrices. It was natural to assume that this
minimum is Per Jn = n!n−n. Let us denote by Ωn the set of all
doubly stochastic matrices. The assertion

A ∈ Ωn ∩ A 6= Jn ⇒ (Per (A) > per(Jn))

became known as the Van der Waerden conjecture. Some-
times just showing that n!n−n is the minimal value is referred
to as the conjecture.

This note allows me to save for posterity a humorous ex-
perience of the late sixties. Van der Waerden, retired by then,
attended a meeting on combinatorics, a field he had never wor-
ked in seriously. A young mathematician was desperate to pre-
sent his thesis in 20 minutes. I was sitting in the front row next
to Van der Waerden when the famous conjecture was menti-
oned by the speaker and the alleged author inquired what this
famous conjecture stated!! The exasperated speaker spent a few
seconds of his precious time to explain and at the end of his talk
wandered over to us to read the badge of the person who had
asked this inexcusable question. I could foresee what was to
happen and yet, I remember how he recoiled. You needn’t wor-
ry — he recovered and now is a famous combinatorialist. The

lesson for the reader is the following. If you did not know of the
’conjecture’ then it is comforting to realize that it was 40 years
old before Van der Waerden heard that it had this name.

What is the origin of the problem? Upon my request Van
der Waerden went far back in his memory and came up with
the following. One day in 1926 during the discussion that took
place daily in Hamburg O. Schreier mentioned that G.A. Miller
had proved that there is a mutual system of representatives for
the right and left cosets of a subgroup H of a finite group G. At
this moment Van der Waerden observed that this was a proper-
ty of any two partitions of a set of size µn into µ subsets of size
n. This theorem was published in "Hamburger Abhandlungen"
in 1927. In the note, added in the proof, Van der Waerden ack-
nowledged that he had rediscovered the theorem which is now
known as the Konig-Hall theorem . . .

In the terminology of permanents we can formulate the pro-
blem Schreier and Van der Waerden were considering as fol-
lows. Let Ai(1 ≤ i ≤ µ) and Bk(1 ≤ k ≤ µ) be the subsets in
two partitions and let aik := |A ∩ Bk|. Then A = (aik) is a ma-
trix with constant line sums (= n). The assertion that there is a
mutual system of representatives of the sets Ai respectively of
the sets Bk is the same as to say that Per A > 0. At this point
Van der Waerden wondered what the minimal permanent, un-
der the side condition that all line sums are 1, is? He posed this
as a problem in Jber. d. D.M.V. 35 and thus the Van der Waerden
conjecture was born.’ ”

Remarks
The matrix Jn is the n× n matrix with all entries equal to 1/n. In
a double stochastic matrix all rows and all columns sum up to
1. G.P. Egorychev provided one of the proofs in 1981. The other
independent proof is from D.I. Falikman.

This is in particular interesting for h ≥ n − 2, in which case we
can easily see that pk(Jn,n+h − B) is independent of h, meaning
that Per (B) = f (n, h) is polynomial in h. For example, we have:

f (5, h) = h5 − 5h4 + 25h3 − 55h2 + 80h− 4 (h ≥ 3).

We have polynomials up to f (10, h). See the sequences A079908-
A079914 in [7]. In [6] a small SAGE-program can be found that
generates these polynomials.

The Free Dancing School and Juggling
What if the girls choose directly out of the set of n + h boys, and
take a boy either of their own length or taller as partner.

Again B is a (0, 1)-matrix of size n× (n + h) that specifies the

possible dancing pairs. We have bi j = 1 if and only if i ≤ j ≤
n + h. The number of matchings with cardinality n is Per (B). Let
b1 , b2 , ..., bm be integers with 0 ≤ b1 ≤ b2 ≤ ... ≤ bm. The m× bm

(0, 1)-matrix A = [ai j] defined by ai j = 1 if and only if 1 ≤ j ≤ bi,
(i = 1, 2, ..., m) is called a Ferrers matrix, and is denoted by
F(b1 , b2 , ..., bm). According to [3], Corollary 7.2.6, we can calcu-
late the permanent with Per (F(b1 , b2 , ..., bm)) = ∏m

i=1(bi − i + 1).
We can associate a matrix B to a Ferrers matrix F(b1 , b2 , ..., bn) by
setting bi = h + i. So Per (B) = ∏n

i=1(h + i− i + 1) = (h + 1)n; a
result we could also have found by direct counting.

We note that the counting problem in Proposition 3.1 in Jug-
gling polynomials by Kamstra can be solved by calculating the per-
manent of the corresponding Ferrers matrix. See [9] page 5. k
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